COMPARISON OF STUDENT PERFORMANCE AND ATTITUDE UNDER THREE LESSON-
 SELECTION STRATEGIES IN COMPUTER-ASSISTED INSTRUCTION

by
Marian H. Beard, Paul V. Lorton, Barbara W. Searle,
and R. C. Atkinson

TECHNICAL REPORT NO。 222
December 31, 1973

PSYCHOLOGY \& EDUCATION SERIES

Reproduction in Whole or in Part is Permitted for Any Purpose of the United States Government

This research was supported jointly by the Advanced Projects Research Agency of the Department of Defense and by the Office of Naval Research, Personnel and Training Research Programs, Psychological Sciences Division, under Contract No. NOOO14-67-A-0012-0054.

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
STANFORD UNIVEERSITY
STANFORD, CALIFORNTA

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMEER 2. GOVT ACCESSION NO. 222	3. RECIFIENT'S CATALOG NUMBER
4. Title (and Subtite) COMPARISON OF STUDENT PERFORMANCE AND AIPIITUDE UNDER THREE-LESSON SEIECTION STRATEGIES IN COMPUTER-ASSISTED INSTRUCTION	5. TYPE OF REPORT A PERIOD COVERED Technical Report C. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(θ) Marian H. Beard, Paul V. Lorton, Barbara W. Searle, and R. C. Atkinson	-. CONTRACT OR GAANT NUMEER(a) N00014-67-A-0012-0054
```9. PERFORMING ORGANIZATION NAME AND ADDRESS Institute for Mathematical Studies in the Social Sciences - Stanford University Stanford, Califormia }9430```	10. PROGRAMELEMENT, PROMECT, TASK NR 154-326
11. CONTROLLING OFFICE NAME AND ADDRESS   Personnel \& Training Research Programs   Office of Naval Research   Arlington, VA 22217	12. REPORT DATE   31 December 1973
	13. NUMTEE OF PRAES 73
T4. MONITORING AGENCY NAME \& ADDRESS(If diflormit from Controlling Ofilico)	18. SECURITY CLASS. (ot thio roporn) none
	13. DEECLASSIFICATION/DOWNGRADING

Approved for public release; distribution unlimited
17. DISTRIBUTION STATEMENT (of the abetract entered in RIock 20, 1 it difformit from Report)
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse oldo If neceseary and Identify by block number)

Computer-assisted Instruction
Instruction Control Strategy
Computer Programming Education
20. ABSTRACT (Continte on revorie alde If nececeery and fdontity by block mumber)

Three problem selection strategies (student selection, program selection weighted by past performance, and forced selection independent of student history) were compared in a CAI course in computer programming. Various measures of aptitude, performance and attitude were examined. No consistent difference was observed among the three groups. The results are discussed
in terms of the specific experiment and the general problem of curriculum design for comparing path selection strategies: Continuing experimentation is described.
ARPA Order Number: ..... $2284 / 8-30-72$
Contract Number:
Program Code Number:
ONR Project Number:NOOO14-67-A-0012-0054
Principal Investigator: Richard C. AtkinsonProfessor of Psychology(415) 321-2300, Ext. 3487
Contractor: Institute for Mathematical Studies in
the Social Sciences
Stanford University
Stanford, California 94305
Scientific Officer: Dr. Joseph YoungAssistant DirectorPersonnel and Training ResearchProgramsOffice of Naval Research (Code 458)
Effective Date: 1 August 1970
Expiration Date: ..... 31 July 1974
Sponsored by
Advanced Research Projects Agency ..... and
Office of Naval ResearchARPA Order No. 2284The views and conclusions contained in this document are thoseof the authors and should not be interpreted as necessarilyrepresenting the official policies, either expressed or implied,of the Advanced Research Projects Agency or the Office of NavalResearch or the U. S. Government. Reproduction in whole or inpart is permitted for any purpose of the U.S. Government.Approved for public release; distribution unlimited.

This study investigated the effects on student performance and attitude of three different strategies for selecting lessons in a course in computer programming presented by computer. The focus of the investigation was a comparison of computer selection vs student selection of instructional material. ${ }^{1}$

A commonly held belief is chat students prefer to exercise control over their course of study; this assumes that they are capable of making such decisions, and that provision for such control will be a motivating factor reflected in an increased rate of learning. Little experimental data exist to support this belief. In fact, it is not even known how much control students will exercise when given the option. This study was designed, in part, to examine the effect of student control on both pexformance and attitude.

The study was conducted using eight remote terminals linked by telephone lines to the PDP-10 computar at the Computer-assisted Instruction (CAI) Laboratory of the Institute for Mathematical Studies in the Social Sciences (IMSSS) at Stanford University. A simple and inexpensive device (Model-33 teletype) was used as the student terminal. The CAI program imposed no time constraints; students were free to spend as much time as they chose on any lesson.

The course, "Computer Programming in AID," was designed for one quarter or one semester of instruction in the Algebraic Interpretive Dialogue (AID), a mathematically oriented programming language. It
consists of 36 parallel sets of short and long lessons as well as tests and extra-credit problems. Long lessons cover the same material as the corresponding short lessons, but in greater detail. An outline of the course is shown in Table 1 .

Three experimental conditions were established: free choice, no choice, and program choice. Students in the "free-choice" condition were permitted to alter thetr position in the course at any time. Students in the "no choice" condition followed a straight path through the long lessons, with a test after every fourth lesson, and were not allowed to alter the sequence of lessons. Students.in the "programchoice" condition followed a modified path through the short lessons with a test after every. foutth lesson. The progress of these students was monitored by the program, and the corresponding long lesson was presented when a student performed below a set criterion, either in a short lesson or on a test.

Sixty students, distributed between both schools and over the entire 1972-19\%3 school year, were selected as subjects. for this study. Thee equal groups were created by random assignment to each selection condition.

The measures used in the analysis were: the Computer Programming Aptitude Battery, two final examinations prepared by the project staff, the responses. to an attitude questionnaire, the number of times a student signed on to the course, the number of minutes spent signed ong the number of lessons taken, the number of problems correct,
the number of problems attempted, the percentage correct, and the highest lesson completed.

Our results indicated no significant differences among the three conditions on any of the performance or attitude measures. It cannot be said, on the basis of these findings, that a curriculum offering extensive student control is either superior or inferior to a program-controlled sequence. In fact, it appears that the "freechoice" students did not make sufficient use of their choice option to alter dramatically the sequence of lessons.

The fmplications of these results deserve some discussion. A student's use of choice options is related to the curriculum he is studying, both in its content and in its instructional design. The subject matter taught in the AID course was organized in a hierarchical, cumalative set of lessons, each to some extent dependent on concepts and skills developed in earliez lessons. This inherently linear organization, although quite common in computer programming instruction, does not lend itself to student control over the curriculum, beyond skipping or reviewing items, as evidenced by the similarity of the sequences followed by the subjects in the three groups.

It is possible to construct a fundamentally nonlinear instructional-experimental environment in which program and student strategies can be examined more fully. Building on the results of the current study, we are developing and testing a very different CAI
curriculum. The course content will be the same-introductory programming--but one major feature distinguishes the new curriculum from the AlD course. The instructional sequence will be incentionally nonlinear, ioe. it will be dependent on students' acquisition of skills in interrelated conceptual areas instead of their progress through a defined series of lessons. The curriculum driver will be capable of making decisions about students' abilities on the basis of an informational network of programming concepts, and will be capable of selecting an instructional task appropriate to students at their particular level. This design implies the possibility of exploring differences in the performance of those students whose selections are made by the program and those who are forced co choose problems that cannot, by the nature of the network design, be sequenced in a preplanned hierarchy. There will be no predetemined, recognizable "default" sequence, and to the students, the curriculum will appear as an individualized sequence of programming tasks.

One planed experiment will again involve program-selection and stucent-selection modes: in the program-selection mode all instruction, hints, and problems will be generated by the program as determined by its decision-making capabilities. In the studentselection mode, the problems and instructional hints will be specifically requested by the student.

Environment and Equipment


#### Abstract

This study was initiated as a prelude to a more elaborate investigation of branching strategies. It was thought that the branching procedare used here could answer certain preliminary questions on the evaluation instruments and on the content of the course itself.

The study was conducted using four CAI terminals located at the University of San Francisco (USF) and four terminals located at De Anza College in Cupertino, California. The cexminals were linked by telephome lines to the PDP-10 computer at the CAI Laboratory of IMSSS at Stanford University.

The Stanford CAI communication network supports approximately 200 teminals, ranging from Model-33 teletypes operating at 100 words per minute, to high-speed cathode-ray tube displays operating at 10,000 words per minute. Although chey provide no audio, visual, or graphic capablities, teletypes are sturdy, low-cost devices that provide the student with a printed copy of his interaction with the instructional progxam。


The CAI terminals at USF were located in a classirom near the office of the College of Business Administration, under whose auspices the research program at USF was implemented. On weekdays, students had free access to the CAT terminals from $12 \mathrm{a}, \mathrm{m}$. to 10:00 $\mathrm{p} \cdot \mathrm{m} \cdot$, and on weekends as permitted by the scheduling of computer down-time.

Schedules were used to apportion terminal time; three terminals were available for advance sign-up in one-hour time blocks. The fourth terminal was available on a first-come, first-serve basis for one-hour periods. Under ideal operating conditions four terminals would have provided 200 hours of terminal time per week, enough to comfortably accommodate the approximately 50 students registered for the course during the fall semester. Scheduling problems did develop, however, and thus enrollment for the spring semester. was kept under 25 in order to insure adequate access to the terminals.

The four terminals at De Anza College were located in the Data Processing Laboratory. The course was given by the Business and Data Processing Division and was open to all students. Eighteen students were enrolled for the fall quarter, 14 for the winter quarter, and 16 for the spring quartex. With this number of students no scheduling problems arose.

The CAl program imposed no time constraints on students working at terminals. Students had unlimited time to respond to each question, and to complete a lesson. The process of initiacing interaction with the instructional program is called "signing on," and disconnecting from it, "signing off." When a student finished a lesson he was free to sign off, or to continue with another lesson. He was also permitted to sign off in the middle of a lesson.

## Curriculum

The course, Computer Programming in AID, was designed for one quarter or one semester of instruction in AID. It consists of 36 sets of lessons plus tests and extra-credit problems. An outline of the course is presented in Table 1 . ATD resembles BASIC in its use of line numbers and in its relatively simple grammatical rules, but it differs from BASIC in that AID allows recursive procedures. The IMSSS implementation of AID is interpretive and provides students with diagnostic messages and flexibility in changing programs. Topics covered by the curriculum include conditional execution, loops, lists, two-dimensional arrays, standard functions, user-defined functions, and recursive functions (see Friend, 1973).

The AID course was extensively revised for use in this investigation. The revised curriculum is organized into four strands, containing Short Lessons (SL), Long Lessons (LL), Tests (T), and Extracredit Problems (EX). Lessons in the LL strand cover the same material as those in the SL strand, but in greater detail. The average lesson from the $S L$ strand has about 20 problems, while that from the LL strand has about 30 problems. Many of the problems in borh types of lesson have from one to three subproblems.

The test strand contains nine tests. A test is designed to cover the immediately preceding four lessons. It contains 40 items, 10 for each of the four lessons.

The EX strand does not contain a lesson at each level; the EX lessons are listed in Table 1. An EX lesson typically contains from one to five programming problems, some of considerable complexity.

DESIGN AND EXPERTMENTAL PROCEDURES
Subjects
Two groups participaced in this study. The first consisted of University of San Francisco students enrolled for academic credit in a course introducing the use of computers in business administration. These students are required to take a programming course, but are free to choose among several options. Thus, enrollment for this course was voluntary. The fall class numbered 49,30 men and 19 women, and the spring class numbered 23,16 men and 7 women. Subjects wexe mostly first-year students and none had prior progxaming experience.

The second group of students attended De Anza Junior College, and did not fulfill any requirements by enrolling in the AID course. The distribution of students enrolled was (a) for fall, 11 men, 7 women; (b) for wincer, 9 men, 5 women; and (c) for spring, 9 men, 8 women.

Sixty students, distributed besween both schools and over the 1972-1973 school year, were selected as subjects for the results reported below.

## Experimental Conditions

The chree experimental conditions designed for this study are Student Selection (SS), No Selection (NS), and Program Selection (PS). The condryions are distinguished as follows:

1. SS. A student in the SS group was permitted to alcer his position in the course at any time the use of three control characters was available to him.

Control Character $\quad \because \quad$ Action
CTRL-G

CTRI-T

CTRL-H problem
choose a different lesson and/or
have the terminal print the answer to the current problem
skip the current problem

The SS student was permitted to use AID at any time, whether the current problem involved writing a program or not.
2. NS. Procedures for the NS group were designed to guide the student on a straight path thiough the LL strand, with a test. (T strand) after evexy fourth lesson. The control characters described aboye did not operate for the NS Group. A student was not allowed to alter the order in which his lessons wexe presented and he was permitted to use AID only for programming problems.
3. PS. The student in the PS group followed a modified path through the $S L$ strand with a test after every fourth lesson. The control charactexs described for the $S S$ student were not available to the $P S$ scudent, and a student was permitted to use AID only for programming problems. The student's progress through the SL strand was modified in two different situations:

1. At the end of each $S L$ the student's score was checked. If he answered 90 percent or more of the problems in the lesson correctly on the first try, he was sent to the corresponding EX lesson if one was available. If his score was below 75 percent, he was sent to the corresponding $L E$ for further work. In either case, after completing the branch lesson he returned to the next lesson in the SL strand.
2. After each test the student's score was checked for the items related to each of the previous four lessons; He repeated the $L L$ lessons related to those concepts on which his test performance fell below 75 percent After taking the prescribed reviews the student returned to the next $S L$ lesson following the test.

The 60 students were roughly matched on the basis of their performance on the aptitude battery given as a pretest at the beginning of the course. The three equal groups studied here $(S S=20, N S=20$, $P S=20$ ) were created by random assignment.

## Critexion Measures

Students were tested at the beginning of the semester using the Computer Programmer Aptitude Battery (CPAB), published by Science Research Associates. The CPAB is comprised of five separately timed tests, measuring the following skills and aptitudes: verbal meaning, reasoning, letter series (a test of abstract reasoning ability), number ability, and diagramming (using flow charts).

Several instruments were used at the end of the semester to evaluate performance and attitude. The project staff prepared a twopart final exmination .. Part A was an off-line, closed-book test covering the entire course. It contained 53 questions, some requiring constructed responses, others, multiple choice. It was designed to test (a) knowledge of AID syntax, (b) understanding of program flow, (c) abilficy to analyze a program and to predict its output, and (d) ability to construct or complete programming algorithms to solve a specific problem. Part $B$ consisted of five programming probiems that were to be written at CAI terminals. Students were permitced to use notes and the course handbook. For each problem they submitted a listing of their program and sample output. Parts $A$ and $B$ of the final examination can be found in Appendix. A.

An attitude questionnaire was administered to USF students. The questionnaire (Appendix B) is a revision of one developed to evaluate a CAI project at Tennessee State University (see Searle, Lorton, Goldberg, Suppes, Ledet, \& Jones, 1973). It contains 12
statements about the student's CAI experience. A seven-point scale was used to indicate the degree of agreement with with each statement. Various parameters of student performance on the course were used. These performance characteristics were obtained from data collected by the instructional program. The program saved all student responses. Only first responses were used to determine the number of problems correct.

The fuli list of measures used in the analysis includes:

1. Performance on the $C P A B$
2. Performance on final examinations
a. Test A (project off-line, closed-book examination)
b. Test B (project on-1ine examination)
3. Responses to the attitude questionnaire
4. Number of times the student signed on to course (\#SIGN ONS)
5. Total number of minutes spent signed on to course (MINUTES)
6. Total mumber of lessons taken (LESSONS)
7. Total number of problems worked correctly (\# CORRECT)
8. Total number of problems attempted (非 PROBLEMS)
9. Percentage correct (PERCENT)
10. Highest lesson completed (TOP LESSON)

ANALYSIS AND DISCUSSION OF EXPERIMENTAL RESULTS

## Aptirude Measures

Scores on the CPAB for students in the three experimental groups are shown in Table 2. The CPAB rest marrual indicates that percentile norms for experienced computer programmers and systems angiysts are based on the scores of personnel from a variety of business and industrial installations, including computer manufacturers. Norms for programmer trainees are based on the scores of applicants for jobs with civil service agencies and persons enrolled in basic-computer-systems reaining at universities or compurermanufacurer training sites. Approximately 80 percent of the experienced programmers and 50 percent of the programmer trainees were college graduates.

Table 3 shows a comparison between the experimental subjects' scores and the norms of the aptitude battery for both programmer trainees and experienced programmers. The average score for the experimental group, 62.06 , lies in the 55 th percentile on the scale for trainees and in the 9 th percentile on the scale for experienced piogrammers.

The CPAB manual states that performance on the Letter Series Subtest is least affected by education and experlence; this may well account for the experimental group's relatively high percentile rank (57) compared with rankings on other subtests on the experienced programers ${ }^{\text { }}$ scale。

Performance on the CPAB proves to be a usefiul predictor or performance on the AID course. The correlations between scores on CPAB subtests and two performance measures, percentage correct in the course and score on Test $A$, are shown in Table 4.

Total score on the CPAB accounts for 46 percent of the variability in percentage correct in the course and 32 percent of the variability in Test $A$ scores. The claim by the developers of the CPAB that performance on the Diagramming Subtest is highly related to subsequent success in programming is supported by the results in Table 4. The two subtests with lowest predictive ability are verbal meaning and numbex ability. The AID curxiculun uses. numerical examples exclusively, in providing programming problems; nevertheless, the subtests that depend on reasoming ability serve as beter performance predictors.

Descriptive measures of progress in the curriculum for each experimental group are presented in Table 5. The average percentage correct over all lessons for all students was 72.48 . Students signed on for sessions at the texminal an average of 59 times and worked, on the average, a total of 2056 minutes. They attempted, on the average, 1303 problems and covered over 36 lessons (including both short and long lessons). There were no signiffcant differences among the three experimental groups on any of the measures of course usage and progress. The NS students, who took only the long lessons, spent more time at the terminals, and attempted more problems than students in the other two groups, but the differences were small.

Use of Choice Options
The SS: students were allowed complete control over the selection of lessons. All students had a list of the lessons in the course and were told how to select lessons. The SS students made little use of this opportumity to control the sequence of lessons and, in effect, to "individualize" cheir curriculum. The path through the course of the 20 SS students was compared with the standard order of lessons shown in Table 1 (lessons 1-4, test 1; lessons 5-8, test 2; etc.). Ten students showed no deviations from the standard pattern, three students took one or two lessons out of order, three students took three or four lessons out of order and the remaining four students took more than four lessons out of order. Thus, approximately threefourths of the students made essentiaily no use of the freedom to change the order of cheir lessons.

The paths through the course chosen by the four students who deviated most from the standard order are shown in Table 8. Student 1 used the choice option to take ceass out of order; in all but one case, he opted to take the tests early. Student 2 took an essentially straight path though the short and long lessons, oecasionally skipping an Li lesson to retum to ft later, and, twice, to return to an EX lesson. Student 3 skipped ahead to work LL lessons out or̂ order, but returned to work SL lessons syscematically, skipping only SL11 and SL16. Student 4 skipped around a bit early in the course, but later used the choice option only to take tescs out of order.
In almost no cases did students use the choice option to skip forward in the curriculum. Students were extremely conservative in the use of their freedom to sequence the course; most often they used this freedom to take tests out of order or to return to forms of lessons already taken.
Table 7 summarizes the choice of lesson types for the SS students. Students 1-4 are those whose paths are shown in Table 6. Of the remainder, one took LL lessons only, while five combined a mixture of $S L$ and LL lessons in approximately equal numbers. The rest of the students (with only minor exceptions) worked only SL lessons. Thus, approximately half the students chose the fastest straight path through the course.

Final Examinations
A two-part final examination was administexed by the project staff to students in the experiment. Results of this examination are shown in Table 8. Because of scheduling difficulties 13 students were unable to take Test $B$ of the examination.

Although the mean scores for the three experimental groups do not differ significantly, the scores for the NS students were slightly higher on Test $A$ and slightly lower on Test $B$ chan for the other groups.

Test A was an off-line, paper-and-pencil examination Results of a linear regression analysis using performance on Test $A$ as the dependent variable are shown in Table 9. The top lesson taken and the score on the CPAB together account for more than 50 percent of the variability in the Test A score.

## Attitude Questionnaire

The attitude questionnaire (Appendix B) contains 12 items ranked by students from strong agreement (1) to strong disagreement (7). The mean response by condition to each question is given in Table 10.

Generalizing over all students, the strongest responses showed agreement with the statements in questions 1 and 3 . These were "I worked as hard answering questions in the computer lessons as I do in the classroom" and "I like working at my own pace at the terminal," respectively. PS students agreed more strongly than the other groups with question 1 (means are $S S=2.588$, NS $=2.632, \mathrm{PS}=1.824$ ), and SS students agreed more strongly with question 3 ( $\mathrm{SS}=1.412$, $\mathrm{NS}=2.421$, $P S=2.588)$ 。

Both of these results demonstrace favorable attitudes toward particular aspects of the CAI experience. The mean responses do not demonstrate a strong negative feeling toward CAI on any question.

Two of the attitude questions show relatively high correlations with some descriptive measures and with test performance; the results are shown in Table 12. The questions are No. 2, "I learned from the complater lessoms as well as I would have learned the same lesson in the classroom," and No. 10, "I would like to participate in another CAI course." Students who took more lessons and answered more problems correctly tended to have favorable attitudes. Performance on Test B correlated with positive attitude on questions 2,3 , and 4.

There were no significant differences between conditions in responses to the questions, as shown by the results of an analysis of variance presented in Table 11. For all of the attitude questions, the between-groups degrees of freedom (d.fo) is 2, and the within-groups d.f. is 50. For significance at the 01 level, an Fratio of 5.06 is needed; at the .05 levei, an $F$ ratio of 3.18 is needed. None of the ratios found reach these significant values.

## Item Analysis

A master list matching items on Part $A$ of the final examination with the lesson each item tested was prepared by the author of the course, JoE. Friend. Student responses to items for which they had and had not taken the appropriate lesson are shown in Table 13.

The labels in the "Lesson Status" column of Table 13 are independent of the three experimental conditions. Each item in the examination tested material covered by both an SL and an LL lesson. For each item, each student falls into one of the "Lesson Status" categories by virtue of those lessons he completed. For example, the "Not Taken" category includes students from all three experimental conditions. The "SL Only" includes only SS and PS students; the "LL Only" includes only SS and NS students; and the "SL \& LL" includes only SS and PS students.

Table 13 shows, for example, that of the 1367 incerrect responses tallied on the examination, 462 wexe made by students who had not taken either SL or LL lessons associated with the items, 455 were made by studenes who had taken the sssociated $S L$ lesson only, 274 were by students who had taken the assccifated LL lesson only, and 176 were by students who had taken both the SL and the LL lessons associated with the item. There were 98 items skipped by students who had taken the lessons on which they were based compared with 195 items skipped by students who wexe unfamiliar with the material on which the item was based. There were 349 correct responses made by students who had not
taken the appropriate lessons for the items. An examination of these responses revealed that 215 of them were to six questions that gave the student a binary choice (true-íalse, correct-incorrect), and it is likely that guessing played a large tole in producing these correct answers.

Table 14 shows the percentage correct, incorrect, and not tried for all students, and pereentage correct and incorrect based on total attempts. Apparently students who took only the LL lesson did substancially better ( 61.8 to 38.2 percent) than students who took only the SL lesson ( 51.7 to 48.3 percent). Students who took both the SL and LL lessons fell in between. This is not a, surpyising finding since most of those who took both lessons needed extra review and were thus not likely to be the best students.

## SUMMARY AND CONCLUSIONS

The focus of this investigation was a comparison of computer-program-controlled selection and student-controlled selection of instructional materfal during one quarter or one semester of instruction in AID. The performance and attitude of 60 students were examined: 20 in the "studentoselection" sondition, 20 in the "noselection" condition, and 20 in the "program-selection" condition.

Results indicated no significant differences among the three conditions on any of che performance or attitude measures, although there are interesting correlations among the measures over all students. On the basis of these findings, a curriculum offering extensive student contel cannet be demonstrated to be either superior or inferior to a program-controlled sequence.

It is clear that the $S S$ students did not make sufficient use of their choice option to alter drameticelly the sequence of lessons, and in this sense. the original question of student vs program control cannot really be examined poperly from the data collected.

A studert's use of choice aptions is related to the curriculum he is stadying, both in its content and in its instuweronal design. A curriculum may incorporate various degrees of limeaxity, branching facility, remedial content, dialogue capability, student performance analysis, parallel content strands, etc, and these features may be developed and combined so chat they motivate a student either to exercise optioms or to accept obvious choices as they are offered.

The subject matter taught in the ATD course was organized in a hierarchical, cumulative set of Iessons, each to some extent dependent on concepts and skills developed in earlier lessons. This inherently linear organisation, although fairly commoz in conventional instruction in the subject, does not lend diself to the exercise of student control of the curriculum beyond skipping or reviewing, as evidenced by the performaxe of the subjects of this study. The nost effective lesson sequence, in their view, is the straight line of the original conceptual design. The SS students wexe explicitly encouraged to develop their own alternative strategies, and during the year this encouragement was repeated many times. Thus, it must be concluded that the linear paths were chosen in conscious preference to any Individually developed algorichms, which resulted in some disappointment to the expeximenters.

The experiment, therefore, does not properly atcack the question of modes of control. However, it is posiible to eonstruct a fundamentally nonlineax instructionaloexperimental enviroment in which program and student strategies can be examined more fuliy. Partiy on the basis of the inconclusive results of the current study, a very differenc CAI cunroulum is being developed and is now in the initial testing stage: The course content will be the same-introductory progxamming--but one major feature distinguishes the new curriculum from the AID course. The instructional sequence will be intentionally nonlinear, ioes, ft: will be dependent on students acquisition of
skills in interielated conceptual areas instead of their progress through a defined series of lessons. The curriculum driver will be capable of making decisions about students? abilities on the basis of an informational network of programming concepts, and will be capable of selecting an instructional cask appropriate to students at their particular level. This design implies the possibility of exploring differences in the performance of those students whose selections are made by the program and those who are forced to choose problems that cannot, by the nature of the network design, be sequenced in a preplanned hierarchy. There will be no predetermined, recognizable "default" sequence, and to the students, the curriculum will appear as an individualized sequence of programming tasks. Instruction will be given only in response to the students' difficulties and requests.

The new course, which will teach the BASIC programming language, is being designed to test selection strategies in a more fluid environment. In the PS mode, all instruction, hints, and problems will be gexerated by the program as determined by its decision-making capabilicies. Note that this xequires considerable errox diagnosis and interactive capabilities. In the SS mode, the problems and instructional hints will not be given automatically by the program, but must be requested specifically by the student.

It is hoped that this design will facilitate experimentation with instructional control strategies in a technical field, and at the same time allow enough freedom in the curficulum to make a "strategy" meaningful and necessary.

## Topic

> f How to use the instructional program
> 2 Using AID for arithmetic: The TYPE comand
> 3 Order of axithmetic operations
> 4 Exponents and scientific notation Test 1

5 The SET and DELETE commands
6 Indirect steps, the DO command, the FOR clause
7 Stored programs: Farts and files
8 The DEMAND command and the TIMES modifier
Test 2
9 Relations and the use of the "if" clause
10 The To command
11 Debugging techniques
12 The indirect use of DO
Test 3
13 More on debugging
14 The FORM statement
15 Absolute value
16 Loops
Test \&
17 More on loops
18 Loops and the FOR clause
19 Debagging tools: STOP and GO
20 Loops with a DEMAND command
Test 5
21 Lists
22 Moxe on lists
23 Arrays
24 Nested loops and nested DO commands Test 6

25 More on arrays
26 The LET command
27 Standard functions: SQRT, IP, FP, SGN
28 SUM, PROD, MAX, and MIN

Lesson identifiers
Short Long Extra
Test lesson lesson credit

SL
SL 2
-

SL 3
LL 3
-
SL 4
LL 4

SL 5 LL 5 EX 5
SL 6
LL 6
SL 7
LL 7
SL 8
LL 8
EX 8

SL 9 LL 9 EX 9
SL 10 LL 10 EX 10
SL 11
LI 11
SL 12
LL 12
EX 12

SL 13 LL 13 -
$\begin{array}{llllll}\text { SL } & 14 & \text { LL } & 14 & \text { EX } 14\end{array}$
$\begin{array}{llllll}\text { SL } & 15 & \text { LL } & 15 & \text { EX } & 15\end{array}$
SL 16 LL 16 EX 16
$\begin{array}{llllll}\text { SL } & 17 & \text { LL } & 17 & \text { EX } & 17\end{array}$
SL 18 LL 18 EX 18
SL 19 LL 19
SL 20 LL 20 EX 20

SL 21 LL 21 EX 21
SL 22 LL 22 EX 22
SL 23 LL 23
SL 24 LL 24 EX 24

SL 25 LL 25 EX 25
SL 26 LL 26 -
SL 27 LL 27 EX 27
SL 28 LL 28 EX 28Topic
29 Conditional functions
30 Standard functions: DP, XP
31 Boolean expressions: AND, OR, and NOT
32 More on Boolean expressions: LET and TVTest 8T8
33 The function FIRST
34 Standard functions: SIN and COS
35 Standard functions: EXP and LOG
36. Recursive functionsTest 9T9
Short Long Extra
Short Long Extra
Test lesson lesson credit
Test lesson lesson credit
SL 29 LL 29 ..... -
SL 30 LL 30 EX 30
SL 31 LL 31 ..... -
SL 32 LL 32 ..... -
SL 33 LL 33 ..... EX 33
SL 34 LL 34 ..... EX 34
SL 35 LL 35-
SL 36 LL 36 ..... -

## Scores on the Computer Programmer Aptitude Battery

## Experimental condition

SS NS PS

Part	Mean	S.D.	Mean	S.D.	Mean	S. D.
Verbal Meaning	12.90	4.15	13.35	6.36	14.35	4.29
Reasoning	9.15	3.51	9.15	3.97	9.00	4.43
Letter Series	11.00	4.03	11.05	5.31	12.65	4.08
Number Ability	11.60	3.58	11.10	3.22	10.40	3.18
Diagramming	15.80	8.77	17.40	10.39	17.80	9.44
		60.45	16.10	62.05	23.54	63.70
Total						

## TABLE 3

# Comparison of Subject and Test Norms <br> <br> Computer Aptitude Battery 

 <br> <br> Computer Aptitude Battery}

TABLEE 4
Correlations Between Performance on CPAB Subtests and Two Course Performance Measures
Subtest
Percent
correct
Test A
Verbal Meaning ..... 315 ..... 295
Reasoning ..... 554 ..... 585
Letter Series ..... 560 .....  394
Number Ability .....  280 ..... 312
Diagramming .643 ..... 492
Total ..... 666 ..... 564

TABLE 5

## Measures of Progress in the Curriculum

## Experimental Condition

SS
NS
PS
Total

No. sign-ons	53.15	63.85	60.50	59.16
Minutes	1995.96	2187.55	1984.18	2055.89
Lessons	35.00	36.90	38.65	36.85
No. correct	876.10	1075.95	891.10	947.71
No. problems	1242.30	1479.00	7188.90	1303.40
Percent   correct	71.20		71.80	
Top lesson	25.30	29.45	24.30	26.35

Choice of Path Through the Curriculum for SS Students
STUDENT 1
Lesson $\mathrm{SI}^{\text {a }} \mathrm{LL}$ Test EX

1
2
3
4
T1
5
6
7
8
T2
9
10
11
12
T3
13
14
15
16
T4
17
18
19
20
T5
21
22
23
24
T6
25
26
27
28
T7
29
30
31
32 T8
33 34
35
368

1
2
.

1
$\mathrm{SI}^{a}$

$$
\begin{aligned}
& 1 \\
& 2 \\
& 3
\end{aligned}
$$ 1

2

. 4

6
5 7
89
9 ..... 11

12
13
14
$\begin{array}{r}16 \\ \hline 17\end{array}$
17
$\quad 18$
19
20
22
23
24 - 24
15
17
18
19
$21 *$

$$
10
$$

5

10


TABLE 6 (cont.)

STUDENT 2

Lesson	SL	LL	Test	EX
1	1	2		
2	3	4		
3	5	6		
4	7	8		
T1			9	
5	10	11		12
6	13	14		
7	15	16		
8	17	18		
T2			19	
9	20	21		22
10	24	23		
11	25	30*		
12	26	31*		
T3				27
13	28	29		
14	32	33		
15	34	35		
16	36	37		
T4			38	
17	39	40		41
18	42	43		46*
19	44	45		
20	47	48		49
T5			51*	
21	50	52		
22	53	55*		59*
23	56	54		
24	58	57		
T6			60*	
25	61	62		63
26	64	65		

TABLE 6 (cont.)

STUDENT 3

Lesson	SL	LL	Test	EX
1		1		
2	2			
3	3	5		
4	6			
T1				
5	7	10*		8
6	9	4*		
7	13	17*		
8	14	11*		15
T2			16	
9	18	12*		
10	19	20		
11		24		
12	26	25		
T3			23*	
13	27	28		
14	30	29		
15	31	21*		
16		22\%		
T4				
17	32	33		
18	34			
19	35			
20	36	37		
T5		.	38	
29	39			
22	40			
23	41			
24	42			
T6			43	


TABLE 6 (cont,				
STUDENT 4				
Lesson	SL	LL	Test	EX
1	1	3*		
2	2	4		
3	10*	6		
T1			5*	
5	16*	8		
6	13	12		
7	17	14		
8	18	15		
T2			9*	
9	19	20		
10		21		
11		22		
12		23		
T3			24	
13		25		
14		26		
15		27		
16		28		
T4			. 29	
17		30		
18		31		
19		32		
20		33		
T5			34	
21		35		
22		36		
23		37		
24		38		
T6			39	
25		40		
26		41		
27		43		
28		44		
T7			42*	
29		45		
30		46		
31		47		
32		48		
T8			11*	
33		49		
34		50		
35		52		
36		53		
T9			51*	

## TABLE 7

## Types of Lessons Taken by SS Students

> Number of lessons


20
27
2

## TABLE 8

Scores on Project-designed Final Examination, Number Correct


TABLE 9

## Step-wise Regression Summary Table with Test A as Dependent Variable

Step	Variable	Multiple r	${\underset{r}{ }{ }^{2}}_{\text {Multiple }}$	Last regression coefficient
1	Top lesson	. 5650	.3192	. 5364
2	Total problems	.7296	. 5323	. 2277
3	Sign-ons	. 7534	. 5676	. 0429
4	Experimental condition	. 7556	.5709	. 8018
5	Total lessons	. 7573	.5735	-. 0866
6	Total minutes	. 7581	.5747	. 0005

Scores on Attitude Questionnaire Items

Question	Condition			Total	$\begin{array}{c}\text { Positive or } \\ \text { or negative }\end{array}$
statement (P,N)					

Analysis of Variance Among Experimental Conditionson Attitude Questionnaire
Question F Ratio
1 ..... 1.483
2 ..... 0.844
3 ..... 2.702
4 ..... 0.440
5 ..... 1.137
6 ..... 1.333
7 ..... 1.573
8 ..... 0.481
9 ..... 1.729
10 ..... 1.298
11 ..... 1.457
120.336

## Correlaifions Between Attitude and Performance Measures

Question Measure Correlation

## Question 2.

"I learned from the computer lessons	Lessons	-.4484
as well as I would have learned the	No. correct	-.5418
same lessons in the classroom."	Top lesson	-.4929

Question 10 :
$\begin{array}{lll}\text { "I would like to participate in } & \text { Lessons } & -.4951 \\ \text { another CAI course。" } & \text { No. correct } & -.5307\end{array}$
Top lesson -. 5451

Question 3.
"I like working at my own pace Test B -. 5036
at the terminal。"

Question 4.
"I would prefer competing with my Test B . 4094
fellow students in the classroom
rather than working at computer lessons."

# Responses to Final Examination Items: Percenciage of Students Responding Correctly and Incorrectly 

Lesson status	Percentage				
	Based on total taking test			Based on total attempting item	
	Correct	Incorrect	Not tried	Correct	Incorrect
Not Eaken	34.7	49.5	19.4	43.0	57.0
SL only	49.7	46.4	3.9	51.7	48.3
LL only	58.1	35.9	6.0	61.8	38.2
SL and LL	52.0	44.4	3.5	53.9	46.1
Total	50.4	40.8	8.8	55.2	44.8



Fig. 1. Highest lesson completed in AID course.

## Appendix A

Introduction to AID Programming 1972-73
Final Examination

## Instructions to Examiners

The final examination for the course "Introduction to AID Programming" consists of two parts: Part A is a $50-$ minute paper-and-pencil test, and Part Bis a 50 minute open-book programming test. If the two parts must be given on the same day, they should be given in two separate sessions with a 5-10 minute rest period between sessions.

Part A. No books or notes of any kind are to be allowed during Part A of the final examination. The students are not to be allowed to use a teletype. A.11 that is needed is a copy of Part $A$ and a pen or pencil.

Hand out the copies of Part A with instructions not to open the test until told to do so. Ask the students to read the instructions on the cover page. Allow about 1 minute for this before giving the signal to start the test. Allow 50 minutes for Part $A$.

There are 50 test items in Part A. Each correct answer counts l point, for a total of 50 points. No partial credit will be given for the items in Part A. There will be no penalty for incorrect guesses (no points wi.ll be subtracted for wrong answers).

Part B. Students should be told beforehand that Part B will be an openbook test. They should be asked to bring any books and notes that they wish, including the Supplementary Handbook for Introduction to AID Programming.

At least two days before the students are to take Part $B$ of the final examination, but after their last working session, inform your Stanford representative of which students will take Part $B_{g}$ and when. The computer record for each student will be set so that the next time he signs on he will be automatically switched to the AID interpreter so that he will be able to do the programming problems in Part $B_{0}$

Before handing out copies of Part $B$, ask the students to sign on. Check to be sure each student has been automatically switched to the AID in terpreter. If this does not happen, call Stanford immediately.

After each student is signed on, and is in communication with the AID interpreter, hand out the copies of Part B with the instruction not to open the test until told to do so. Allow the students time to read the instructions on the cover page-wabout 1 minute-mand then give the signal to start. Allow 50 minutes for Part B.

There axe 5 programming problems in Part B. Each problem counts 10 points, for a total of 50 points. Partial credit will be allowed for partially correct programs.

Here is a brief grading guideline to help you answer questions that students may ask during the final examination:
(1) The programs are expected to function correctly only for the range of values of the input variables specified in the problem. Thus, for Problem 2, the program need not cope with negative values of $H$, and for Problem 3, the program need function correctly only for weights between. 0 and 16 ounces, inclusive.
(2) The length of the program is immaterial, only the correctness of the results will be considered in grading.
(3) There are several methods of solving each of the problems in Part $B_{g}$ and no one method i.s preferred. Any method that provides a general solution and produces correct results will be considered correct.
(4) For Problems 1, 2, 3, and 4, specific test values of the input variables are given. However, a program that produces correct results for these test values only, and not for other values of the input variables, will not be considered a correct solution; the program must provide a general solution.

TURN IN ALI TEST PAPERS TO STANFORD. These tests will be used for research purposes and will not be returned. If you wish to use these tests for assigning grades to your students, you may grade the tests and record the grades before you turn them in to Stanford; otherwise, you need not grade the tests.

Final Examination

## Part. A

(50 points)

## $* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~$

DO NOT TURN THE PAGE.


Name

Student number $\qquad$
Instructor's name
Name of school or college
Date $\qquad$

Instructions: You may not use books, notes, or other materials during this part (Part A) of the final examination. There are 50 test items in Part A. No partial credit will be given. You will not be penalized for guessing (no points will be subtracted for wrong answers). You will have 50 minutes to complete the test.

Rewrite each command correctly.

1. IF $X<2$ DUE PART 3
2. DO STP 3.6 FOR X = 1 TO 100
3. TYPE $X(Y+Z)$ AND $X(Y-Z)$ AND $X(Y \div Z)$

Select the expression(s) that are equivalent to the given expression.
4. $A / B-C / D+E \quad$ __ $(A / B)-(C / D+E)$
$(A / B)-(C / D)+E$
$(A / B-C /(D+E)$
5. U/V/W/X
$\ldots(\mathrm{U} / \mathrm{V}) /(\mathrm{W} / \mathrm{X})$
_ $((\mathrm{U} / \mathrm{V}) / \mathrm{W}) / \mathrm{X}$
_ $(U / V) / W / X$

Indicate whether each command is correct or incorrect.
Correct Incorrect
6a. FIIE PART 6, A AS ITEM 3
6b. LET $H(X)=X * 10 \operatorname{IF} Y<100$
7a. TYPE $F(2) * 10 \uparrow 4$ IF $6<3$ IS FALSE
7b。DISCARD PART 3
8a. TYPE FORM 8, X - 98.6, STEP 14.4
8b. RECALL PART 5
9a. $\operatorname{SET} M=M+1 \operatorname{IF} N(I)<T R U E$
9b. $\operatorname{SET} L(\mathbb{N}+1)=\mathbb{N}+1$

Write each of the following expressions in AID notation.

$$
\text { 10. } \sqrt{a^{2}-b^{2}}
$$

11. $\frac{2 x+3 y}{x y}$
12. $|m+n+p|$
13. $3 x^{2}-2 x+5$
14. $(8.9054) \times 10^{-8}$
15. $\left(x_{1}+x_{2}\right) \div\left(x_{3}+x_{4}\right)$
16. $x \leq y+10$
17. $a+b \neq c$
18. $x= \pm 1$

Write the formula for each of the following, using AID notation.
19. The average of the numbers $w, x, y$, and $z$.
29. 22.1 SET $L=3$
22.9 SET $\mathrm{L}=\mathrm{L}+1$
$22.75 \mathrm{SET} L=\Sigma+1$
22.81 DO PART 33 IF L < 5
22.99 TYPE L
33.25 SET L = L + I
33.35 TYPE L
22.95 SET L = L - 1

DO PART 22

For each of the following sets of commands, what numeric result would be typed?
30. $\operatorname{LET} F(X)=X+10$

TYPE F(2/10)
$F(2 / 10)=$
31. $\operatorname{SET} A=16$

LET $\mathrm{S}=\mathrm{A}>10$
$S E T B=T V(S) * A+T V(N O T S) * A * 2$
TYPE B
$B=$ $\qquad$
32. $S E T X=43.1$

SET $Y=\operatorname{IP}(X)$
$S E T Z=F P(X)$
TYPE $\mathrm{Y} / \mathrm{Z}$
$Y / Z=$ $\qquad$
33. $\operatorname{TYPE} \operatorname{PROD}(I=2,6,11: I / 2)$
$\operatorname{PROD}(I=2,6,11: I / 2)=$
34. SET $X=4596.032$

SET $Y=\operatorname{DP}(X) * 10$
TYPE Y
$\mathrm{Y}=$ $\qquad$
35. $L$ ITT $F(X)=(X<10: X+10 ; X / 2)$ TYPE F(12)
$F(12)=$ $\qquad$
36. 7.I SET $X=0$
7.2 DO PART 8 FOR $\mathbb{N}=1(1) 5$
7.3 TYPE X
8.1 SET $X=X+N$

DO PART 7
$\mathrm{X}=$ $\qquad$
37. 3.1 SET N $=843.6$
3.2 SET $P=N / 10$
3.3 TYPE P TN FORM 3

FORM 3:
P EQUALS $\leftarrow \leftarrow$ 。 $\leftarrow$
DO PART 3
P EQUALS $\qquad$
38. 5.1 SET $\mathbb{N}=1$
5.2 SET K $=0$
5.3 SET $F=5$
$5.4 \mathrm{SET} \mathrm{K}=\mathrm{K}+\mathrm{N}$
5.5 SET $\mathbb{N}=\mathbb{N}+1$
5.6 TO STEP 5.4 IF K $<F$
5.7 TYPE K

DO PART 5
$\mathrm{K}=$ $\qquad$
39. 17.1 DO PART 18 FOR $I=1(1) 25$
17.2 TYPE L(7)
18.1 SET $\mathrm{L}(\mathrm{I})=I+2$

DO PART 17
$L(7)=$ $\qquad$
40. 22.1 SETT = 0
22.2 DO PART 23 FOR $I=I(1) 5$
22.3 TYPE T
23.1 DO PART 24 FOR $J=I(1) 3$
24.1 SET T = T + 1

DO PART 22
$T=$ $\qquad$
41. $34.1 \operatorname{SET} X=\operatorname{FTRST}(I=1(1) 10: I / 2-1>2.7)$
34.2 SET $Y=X / 2-1$
34.3 TYPE $Y$

DO PART 34
$Y=$ $\qquad$

Rewrite each set of commands, using the fewest possible commands, preserving all indicated actions.
42. DETETE X

DELETE Y
DELETE Z
SET $Z=2.5$
43. $\quad$ SET $W=X+1$

SET $W=W / 2$
SET W = 5-W TYPE W
44. SET X $=5$

DO PART 2
DETETE X
SET X $=6$
DO PART 2
DELETE X
SET $X=7$
DO PART 2 $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
45. Write the AID commands that would cause Part 8 to be put into permanent storage.
$\qquad$
$\qquad$
$\qquad$
46. Write the AID command that would print the value of the natural logarithm (to the base e) of 4.75 .
$\qquad$
47. Complete step 3.1 in program $B$ below so that programs $A$ and $B$ are equivalent.

## Program A

1. 1 SET $A=1$
1.2 TYPE A/3
1.3 SET $A=A+1$
1.4 TO STEP 1.2 IF A $<10$

DO PART 1

## Program B

3.1 DO PART 4 FOR $A=$ $\qquad$
4.1 TYPE A/3

DO PART 3
48. Suppose two 9 by 17 arrays A and B are given. The following program produces a new array $C$ such that each element in $C$ is the sum of the elements in theccorresponding positions in $A$ and $B$. Complete step 29.2.
27.1 DO PART 28 FOR $I=1(1) 9$
28.1 DO PART 29 FOR $J=I(1) 17$
29.2 SET

DO PART 27
49. Write the command that will cause Part 12 to be executed 5 times.
50. The factorial function is defined to be $n \cdot(n-1) \cdot(n-2) \cdot \cdots \cdot 3 \cdot 2 \cdot 1$. For example, $5!=5 \times 4 \times 3 \times 2 \times 1=120$. Write a definition in AID notation of a function $f$ such that $f(n)=n$.

Introduction to AID Programming 1972-73
Final Examination
Part B
(50 points)

## 

 DO NOT TURN THE PAGE.

Name
Student number $\qquad$
Instructor's name
Name of school or college $\qquad$
Date

Instructions: Part $B$ is an open-book test; you may use any books, notes, or other materials that you wish. There are 5 programming problems in this part of the final examination. Each problem counts 10 points, and you will be given partial credit for partially correct solutions.

Before you open the test you should be seated at a terminal and signed on. As soon as you sign on, the AID interpreter will start automatically so that you can do the programming problems. It the AID interpreter does not start, raise your hand to get help before the instructor gives the signal to start the test.

For each problem you will be asked to list (print) the completed program and execute it for given values to demonstrate that your program works correctly. This listing and demonstration must be attached to this test and turned in to your instructor for grading. You will have 50 minutes to complete the test.

DO NOT TURN THE PAGE UNITIL INSTRUCTED TO DO SO.
1.... Write a program or a function that will convert degrees Fahrenheit to degrees Kelvin. (From degrees Fahrenheit, subtract 32, multiply by $5 / 9$, and add 273.)

To turn in for grading: When the program is finished, list it by giving this command:

TYPE ALL
Execute the program for $38^{\circ} \mathrm{F}, 0^{\circ} \mathrm{F}$, and $-41^{\circ} \mathrm{F}$. Turn in this part of the teletype paper to your instructor for grading, and then delete the program. (DELETE ALL)
2. Write a program that will compute the wages due, to the nearest penny, for F hours of work if the rate of pay is $\$ 4.37$ per hour for 40 hours or less,
Time-andma-half for each hour over 40 hours up to and including the 48 th hour,
Double-time for each hour over the 48 th hour.
To turn in for grading: When the program is finished, list it by giving this command:

TYPE ALJ
Execute the program for $\mathrm{H}=37.25,42.5$, and 52.33 hours. Turn in this part of the teletype paper to your instructor for grading, and then delete the program. (DEIETE ALI)
3. Write a program that will calculate postage for a piece of air mail weighing up to and including 16 ounces if the rates are lik per ounce or fraction of an ounce for 0 to 8 ounces, $\$ 1.00$ total for over 8 ounces up to and: including 16 ounces.

To turn in for grading: When the program is finished, list it by giving this command: TYPE ALL
Execute the program for these weights: 5.2 ounces, 8.7 ounces, 3 ounces. Turn in this part of the teletype paper to your instructox for grading, and then delete the program. (DELETE ALL)
4. Write a program that will calculate the mean and standard deviation of a list $x_{1}, x_{2}, x_{3}, \ldots, x_{10}$ of ten numbers. If $M$ is the mean of the numbers $x_{1}, x_{2}, x_{3}, \ldots, x_{10}$, the formula for the standard deviation is

$$
\sqrt{\frac{\left(x_{1}-M\right)^{2}+\left(x_{2}-M\right)^{2}+\left(x_{3}-M\right)^{2}+\cdots+\left(x_{10}-M\right)^{2}}{10}}
$$

```
To turn in for grading: When the program is finished,
list it by giving this command:
 TYPE ALL
Execute the program for this list of numbers:
 6 8
6 9
72
35
81
5 3
27
6 8
73
98
Turn in this part of the teletype paper to your instructor for grading, and then delete the program. (DEIETE ALL)
```

5. Write a program that will approximate the sum of this series:

$$
1, \frac{1}{\sqrt{2^{2}}}, \frac{1}{\sqrt{3^{3}}}, \frac{1}{\sqrt{4^{4}}}, \frac{1}{\sqrt{n^{n}}}, \cdots
$$

To approximate the sum, compute successive partial sums until the last partial sum computed is equal to the preceding one, that is, until the $n^{\text {th }}$ partial sum is equal to the $\left(n_{\infty}\right)$ st partial sum. Report the $(n-1)^{\text {st }}$ partial sum, and the number of members of the series that were summed to arrive at that approximation.

To turn in for grading: When the program is finished, list it by giving this command: TYPE AL工
Execute the program to demonstrate that it works correctly. Turn in this part of the teletype paper to your instructor for grading, and then delete the program. (DELETE ALI)

## Appendix B

## STUDENT EVALUATION FORM COMPUTER-ASSISTED INSTRUCTION (CAI)

Please read each statement and circle the number on the scale that best describes your feelings.

## SCALE

1 Strongly agree
2 Moderately agree
3 Slighty agree
4 Uncertain
5 Slightly disagree
6 Moderately disagree
7 Strongly disagree

1. I worked as hard answering questions in the
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ computer lessons as I do in the classroom.
2. I learned from the computer lessons as well $11 \begin{array}{lllllll} & 1 & 3 & 4 & 5 & 6 & 7\end{array}$ as I would have learned the same lesson in the classroom.
3. I like working at my own pace at the $\quad \begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ terminal.
4. I would prefer competing with my fellow
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ students in the classroom rather than working at computer lessons.
5. Working with computer lessons is like having $1 \begin{array}{lllllll}2 & 3 & 4 & 5 & 6 & 7\end{array}$ my own tutor.
6. Fout hours a week is sufficient time to $\quad \begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ keep up with the course.
7. I found the computer lessons too easy. $\quad \begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
8. I think working with computer lessons is $\quad \begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ an exciting way to learn.
9. I found working at the terminal more $1 \begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$ 7 frustrating than worthwhile.
10. I would like to participate in another $\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ CAI course.

Appendix B (cont. $)$
11. I found the computer lessons too hard.
12. The CAI system provides the student with more feedback than classroom instruction.
13. Use the back of this sheet to make any comments you wish concerning the CAI program.

Friend, J. Computer-assisted instruction in programming: A curriculum description. Technical Report No. 211. Stanford: Institute for Mathematical Studies in the Social Sciences, Stanford University, 1973.

Searle, B., Lorton, P., Jr., Goldberg, A., Suppes, P., Ledet, N., \& Jones, C. Computer-assisted instruction program: Tennessee State University. Technical Report No. 198. Stanford: Institute for Mathematical Studies in the Social Sciences, Stanford University, 1973.

## Footnote

$1_{\text {TThe }}$ authors extend their appreciation to William J. Regan, Dean, College of Business Administration; Professor John Hofff, Chairman, Computer Science Department, University of San Francisco; and Professor Carl Grame, Chairman, Business and Data Processing Division, De Anza College, Cupertino, California.

4 Dr. Marshall J. Farr, Director Personnel \& Training Research Programs Office of Naval Research Arlington, VA 22217

1 Director
ONR Branch Office 495 Summer Street Boston, MA 02210 ATMN: C. M. Harsh

1 Director
ONR Branch Office
1030 East Green Street
Pasadena, CA 91101
ATYIN: E. E. Gloye
1 Director
ONR Branch Office
536 South Clarke Street
Chicago, IL 60605
ATMN: M. A. Bertin
1 Office of Naval Research
Area Office
207 West 24 th Street
New York, NY 10011
6 Director
Naval Research Laboratory
Code 2627
Washington, DC 20390
12 Defense Documentation Center
Cameron Station, Building 5
5010 Duke Street
Alexandria, VA 22314
1 Chairman
Behavioral Science Department
Naval Command and Management Division U.S. Naval Academy Luce Hall
Annapolis, MD 21402

1. Chief of Naval Technical Training Naval Air Station Memphis (75) Millington, $\mathbb{N} \mathbb{N} 38054$ ATMN: Dr. G. D. Mayo

1 Chief of Naval Training Naval Air Station Pensacola, FL 32508 ATTN: Capt. Bruce Stone, USN

1 LLCDR Charles J. Theisen, Jr., MSC, USN 4024
Naval Air Development Center
Warminster, PA 18974
1 Commander
Naval Air Reserve
Naval Air Station
Glenview, IL 60026
I Commander
Naval Air Systems Command Department of the Navy AIR-413C
Washington, DC 20360
1 Mr. Lee Miller (AIR 413玉)
Naval Air Systems Command 5600 Columbia Pike
Falls Church, VA 22042
1 Dr. Harold Booher NAVAIR 415C
Naval Air Systems Command 5600 Columbia Pike Falls Church, VA 22042

1 Capt, John F. Riley, USN Commanding Officer U.S. Naval Amphibious School Coronado, CA 92155

1 Special Assistant for Manpower
OASN (M\&RA)
The Pentagon, Room 4E794
Washington, DC 20350
i Dr. Richard J. Niehaus
Office of Civilian Manpower Management
Code 06A
Department of the Navy
Washington, DC 20390
1 CDR Richard L. Martin, USN
COMFAIRMIRAMAR $\bar{F}-14$
NAS Miramar, CA 92145
1 Research Director, Code 06
Research and Evaluation Department
U.S. Naval Examining Center

Great Lakes, IL 60088
ATTN: C. S. Winiewicz
1 Chief
Bureau of Medicine and Surgery Code 413
Washington, DC 20372
1 Program Coordinator
Bureau of Medicine and Surgery (Code 71G) Department of the Navy
Washington, DC 20372
1 Commanding Officer
Naval Medical Neuropsychiatric Research Unit
San Diego, CA 92152
1 Dro Jorin Jo Collins
Chief of Naval Operations (OP-987F)
Department of the Navy
Washington, DC 20350
1 Technical Librairy (Pers-11B)
Bureau of Naval Personnel
Department of the Navy
Washington, DC 20360
2 Dr. James Jo Regan, Technical Director
Navy Personnel Resea:ch and Development Center
San Diego, CA 92152
l Commanding Officer
Navy Personnel Research and Development Center
San Diego, CA 92152
1 Superintendent
Naval Postgraduate School
Monterey, CA 92940
ATTN: Library (Code 2124)
l Mr. George N. Graine
Naval Ship Systems Command (SHIPS 03H)
Department of the Navy
Washington, DC 20360
1 Technical Library
Naval Ship Systems Command
National Center, Building 3
Room 3S08
Washington, DC 20360
l Commanding Officer
Sexvice School Command
U.S. Naval Training Center

San Diego, CA 92133
ATMN: Code 303
l Chief of Naval Training Support Code Nw-21
Buillding 45
Naval Air Station
Pensacola, FL 32508
1 Dr. William Lo Maloy
Principal Civilian Advisor for Education and Training
Naval. Training Command, Code OIA
Pensacola, FL 32508
1 Mr. Arnold Rubinstein
Naval Material Command (NMAT1-03424)
Room 82:0, Crystal Plaza No. 6
Washington, DC 20360
I. Dro H. Wallace Sinaiko
c/o Office of Naval Research (Code 450)
Psychological Sciences Division
Arilington, VA 22217.
I Dr. Martin F. WiskoffNavy Personnel Research andDevelopment CenterSan Diego, CA 92152
1 Dr. John Ford, Jr.Navy Personnel Research andDevelopment Center
San Diego, CA 92152
I Technical LibraryNavy Personnel Research andDevelopment CenterSan Diego, CA 92152
Army
1 Commandant
U.S. Army Institute of AdministrationFort Benjamin Harrison, IN 46216ATTN: EA
1 Armed Forces Staff College
Norfolk, VA 23511
ATTN: Library
1 Director of ResearchU.S. Army Armor Human Research UnitBuilding 2422, Morade StreetFort Knox, KY 40121
ATTN: Library
1 U.S. Army Research Institute for theBehavioral and Social Sciences1300 Wilson BoulevardArlington, VA 22209
1 Commanding Officer USACDC - PASA
F't. Benjamin Harrison, IN 46249AITN: LTC Montgomery1 Dr. John L. KobrickMilitary Stress Iaboratory
U.S. Army Research Institute ofEnvironmental MedicineNatick, MA 01760
1 Commandant
United States Army Infantry School
Fort Benning, GA 31905
ATHN: ATSIN-H

I U.S. Army Research Institute Commonwealth Building, Room 239 1300 Wilson Boulevard Arlington, VA 22209 ATTN: Dr. R. Dusek
l Mr. Edmund F. Fuchs U.S. Army Research Institute 1300 Wilson Boulevard Arlington, VA 22209
l Chief, Unit Training and Educational Technology Systems
U.S. Army Research Institute for the Behavioral and Social Sciences 1300 Wilson Boulevard Arlington, VA 22209

1 Commander
U.S. Theater Army Support Command, Europe
APO New York 09058
ATTN: Asst. DCSPER (Education)
I Dr. Stanley L. Cohen
Work Unit Area Leader
Organizational Development Work Unit
Army Research Institute for Behavioral and Social Science
1300 Wilson Boulevard
Arlington, VA 22209
1 Dr. Leon H. Nawrocki U.S. Army Research Institute Rosslyn Commonwealth Building 1300 Wilson Boulevard Arlington, VA 22209

Air Force
l Dr. Martin Rockway Technical Training Division Lowry Air Force Base Denver, CO 80230

1 Maj. P. J. DeLeo
Instructional Technology Branch
AF Humen Resources Laboratory Lowry AFB, CO 80230

1 Headquarters, U.S. Air Force Chief, Personnel Research and Analysis Division (AF/DPSY)
Washington, DC 20330
1 Research and Analysis Division
AF/DPXYR, Room 4 C200
Washington, DC 20330
1 AFHRL/AS (Dr. GoA. Eckstrand)
Wright-Patterson AFB
Ohio 45433

1. AFHRL (AST/Dr. Ross L. Morgan)

Wright-Patterson AFB
Ohio 45433
1 AFHRL/MD
7OI Prince Street, Room 200
Alexandri.a, VA 22314
I $\operatorname{AFOSR}(\mathrm{NL})$
1400 Willson Boulevard
Arlington, VA 22:09
1 Commandant:
USAF School of Aerospace Medicine
Aeromedical Library (SUL-4)
Brooks AFB, TX 78235
1 Capt. Jack Thorpe, USAF
Department of Psychology
Bowling Green State University
Bowling Green, OH 43403
1 Headquarters Electronic Systems Division LG Hanscom Fiela
Bedford. MA 01730
ATTN: Dx. Sylvia R. Mayer/MCIT
1 Lt. Col. Henry L. Taylor, USAF
Military Assistant for Human Resources OAD(E\&LS) ODDR\&E
Pentagon, Room 3DI29
Washington, DC 20301

Marine Corps
1 Col. George Caridakis Director, Office of Manpower Utilization
Headquarters, Marine Corps (AOIH)
MCB
Quantico, VA 22134
I Dr. A. L. Slafkosky
Scientific Advisor (Code Ax)
Commandant of the Naxine Corps
Washington, DC 20380
l Mir. E.A. Dover
Manpower Measurement Unit (Code AOLM-2)
Arlington Annex, Room 2413
Axlington, VA 20370
Coast Guard
1 Mr. Joseph J. Cowan, Chief
Psychological Research Branch (P-1)
U.S. Coast Guard Headquarters

400 Seventh Street, SW
Washington, DC 20590

## Other DOD

1 It. Col. Austin W. Kibler, Director Hiuman Resources Research Office Advanced Research Projects Agency 1400 Wilson Boulevard Arlington, VA 22209

1. Mr. Helga Yeich, Director Program Management, Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209
1 Mr. William Jo Stormer
DOD Computer Institute
Washington Navy Yard
Building 175
Washington, DC 20374

1 Dro. Ralph R. Canter
Director for Manpower Research Office of Secretary of Defense The Pentagon, Room $3 \mathrm{C980}$ Washington, DC 20301

## Other Government

1 Office of Computer Information Institute for Computer Sciences and Technology
National Bureau of Standards Washington, DC 20234

1 Dr. Erick McWilliams, Program Manager Technology and Systems, TIE National Science Foundation Washington, DC 20550

## Miscellaneous

1 Dr. Scarvia B. Anderson Educational Testing Service 17 Executive Park Drive, N.E. Atlanta, GA 30329

1 Dr. Bermard M. Bass
University of Rochester
Management Research Center Rochester, NY 14627

1 Mr. Edmund C. Berkeley
Berkeley Enterprises, Inc.
815 Washington Street
Newtonville, MA 02160

1. Dr. David G. Bowers University of Michigan
Institute for Social Research
P.O. Box 1248

Ann Arbor, MI 48106
I Mr. H. Dean Brown
Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, CA 94025
1 Mr. Michael W. Brown
Operations Research, Inc. 1400 Spring Street Silver Spring, MD 20910

1 Dr. Ronald P. Carver
American Institutes for Research 8555 Sixteenth street
Silver Spring, MD 20910
1 Century Research Corporation
4113 Lee Highway
Arlington, VA 22207
1 Dr. Kenneth E. Clark
University of Rochester
College of Arts and Sciences
River Campus Station
Rochester, NY 14627
1 Dr. Allan Mo: Collins
Bolt Beranek and Newman
50 Moulton Street
Cambridge, MA 02138
$I$ Dr. René V. Dawis
Department of Psychology
University of Minnesota
Minneapolis, MN 55455
2 ERIC
Processing and Reference Facility
4833 Rugby Avenue
Bethesda, MD 20014
1 Dr. Victor Fields
Department of Psychology
Montgomery College
Rockville, MD 20850
1 Dr. Edwin A. Fleishman
American Institutes for Research 8555 Sixteenth Street
Silver Spring, MD 20910
1 Dr. Duncan N. Hansen
Memphis State University
Bureau of Educational Research and Services
Memphis, TN 38152
1 Dr. Robert Glaser, Director Learning Research and Development Center
i. University of Pittsburgh Pittsburgh, PA 15213

1 Dr．Albert S．Glickman
American Institutes for Research
8555 Sixteenth Street
Silver Spring．MD 209.10
1 Dr．Henry Jo Hamburger
School of Social Sciences
University of California
Irvine，CA 92664
1 Dr．Richard So Hatch
Decision Systems Associates，Inc． 11428 Rockville Pike
Rockvi．11e，MD 2085 ？
1 Dr。M．D．Havron
Human Sciences Research，Inc．
Westgate Industrial Park
7710 Old Springhouse Road
McLean，VA 22101
1 Human Resources Research Organization Divis：ion \＃3
P．O．Box． 5787
Presidio of Monterey，CA 93940
1 Human Resources Research Organization Division \＃4，Infantry
P．O．Box 2086
Fort Benning，GA 31905
1 Human Resources Research Organization Divizion \＃5，Air Defense P．O．Box 5057
Fort Bliss，TX 79916
I Fiuman Resources Research Organization Division \＃6，Library P．O．Box 428
Foxt Rucker，AL 36360
1 Dr．Lawrence B 。 Johnson
Lawrence Johnson and Assoctates，Inc． 200 S Street，N．W．W．，Suite 502
Washi．ngton，DC 20009
1．Dr．Norman J．Johnson School of Urban and Public Affairs CarnegiewMellon University Pittsburgh，PA 152.13

1 Dr。 David Klahr
Graduate School of Industrial Admin． CarnegiewMellon University Pittsburgh，PA 15213

I Dr．Robert R．Mackie Human Factors Research，Inc． 6780 Cortona Drive Santa Barbara Research Park Goleta，CA 93017

1 Dr．Andrew R．Molnar
Technological Innovations in Education
National Science Foundation
Washington，DC 20550
I Dr．Leo Munday，Vice President American College Testing Program P．O．Box 168
Iowa City，IA 52240
1 Dr．Donald A．Norman
Center for Human Information Processing
University of California，San Diego La Jolia，CA 92037

1 Mr．Luigi Petrullo 243．1 North Edgewood Street Arlington，VA 22207

1 Dx．Robert D．Pritchard
Assistant Professor of Psychology
Purdue University
Lafayette，IN 47907
l．Dr．Diane M．Ramsey－KIee
R－K Research \＆System Design
3947 Ridgemont Drive
Malibu，CA 90265
1 Dr．Joseph W。 Rigney
Behavioral Technology Laboratories
University of Southern California
Box 3717 South Grand
Los Angeles，CA 90007
1 Dr．Leonard Lo Rosenbaum，Chairman
Department of Psychology
Montgomery College
Rockviille，MD 20850
1 Dr．George E．Rowland Rowland and Company，Inc． P．O．Box 61 Haddonfield，NJ 08033
1 Dr．Arthur I．Siegel
Applied Psychological Services Science Center 404 East Lancaster Avenue Wayne，PA 19087
1 Mr．Dennis Jo Sullivan
725 Benson Way
Thousand Oaks，CA 91360
1 Dr．Benton J．Underwood Department of Psychology Northwestern University Evanston，IL 60201
1 Dro David J．Weiss Department of Psychology University of Minnesota Minneapolis，MN 55455
1 Dr．Anita West
Denver Research Institute University of Denver Denver，CO 80210
1 Dr．Kenneth Wexler School of Social Sciences University of California Irvine，CA 92664
1 Dr．John Annett
The Open University Milton Keynes
Buckinghamshire，ENGLAND
l．Dr．Millton S。Katz
MITRE Corporation
Westgate Research Center McLean，VA 22.101
1 Dr。Charles A。Ullmann，Director Behavioral Sciences Studies Information Concepts，Inc． liol N．Ft．Myer Drive Asolington，VA 22209

1 Dr．Dexter Fletcher
Department of Psychology
University of Illinois，Chicago Circle Box 4348
Chicago，IL 60680

